
Sudoku

1. Problem

Write a program to solve any given easy to medium difficulty level Sudoku puzzle.

2. Play the game

If you have not solved a Sudoku puzzle you can go to sudoku9x9.com to solve one. You’ll need to know

how to solve any given puzzle before you can teach the computer how to solve it. sudoku9x9.com can

also show you step by step how to solve it. You can also enter your own puzzle.

3. Here’s an easy puzzle

Enter this puzzle into sudoku9x9.com and try to solve

it, first on your own, and then with the solver for step

by step instructions if you can’t solve it.

Note that your program doesn’t have to follow the

given step by step instructions. This is just to give you

an idea of how to solve the puzzle.

Step 1

Find all possible solutions for all the empty cells, i.e.,

cells with no solutions yet.

Step 2

Two different things to look for in all the possible

solutions:

1) If there's only one possible solution for a cell then

that number is a solution for that cell. Ex. Cell row

8, column 2 contains only a 4, so 4 is a solution for

that cell. – Naked Single

2) If a possible solution is the only number in the

row, column, or quadrant, then that number is a

solution for that cell. Ex. Cell row 6, column 2

contains the number 5 which is the only

occurrence for that quadrant, so 5 is a solution for

that cell. – Hidden Single

After filling in the numbers 5 and 4 for the solutions

for the two cells

Step 3

Repeat from step 1 until no more changes. All the

solutions should have been found (for easy puzzles).

This is the result from doing step 1 the second time

around.

Notice the changes made for the possible solutions in

the circled cells. There are now two cells with only

one possible solution.

Doing the above 3 steps should be sufficient to solve all the easy to medium difficulty level puzzles.

Here’s the final solution for this puzzle.

4. Grading

C – If your program can only print out possible solutions but cannot solve a puzzle completely.

B – If your program can solve these two puzzles. They can be solved by searching for Naked Singles

only.

Puzzle 1 Puzzle 2

Using only Naked Singles will get 81 solutions Using only Naked Singles will get 81 solutions

A – If your program can solve these two puzzles. Need to search for both Naked Singles and Hidden

Singles.

Puzzle 3 Puzzle 4

Using only Naked Singles will get 41 solutions Using only Naked Singles will get 25 solutions

5. Initial Template Code

What follows are the data structures for storing the puzzle data and the initial template for your program.

In addition to the member functions listed, there’ll probably be many more that you’ll need to have.

It is very important that you understand how to access the data that represent the solutions and the

possible solutions for each cell. Here are some examples:

How do you assign the solution 9 to the red-circle

cell?

board[0][2].solution = 9;

How do you assign the possible solution 2 to the red-

square cell?

board[1][4].possible_solutions[2] = true;

How do you test if the number 3 is a possible solution

in the red-square cell?

If (board[1][4].possible_solutions[3] == true) {

 // 3 is a possible solution

Sudoku.h

// Solves a Sudoku puzzle
// Copyright 2024 Enoch Hwang

#ifndef __SUDOKU__
#define __SUDOKU__

#include <iostream>
#include <string>
using namespace std;

class Sudoku {
private:
 // solution contains the solution number for the cell or 0 if no solution yet.
 // possible_solutions index 1 to 9 contains true if that index number is a
 // possible solution or false if that index number is not a possible solution.
 // possible_solutions[0] is not used.
 struct Board_Cell {
 int solution;
 bool possible_solutions[10];
 };

 // the main 9x9 Sudoku board
 Board_Cell board[9][9];

 // row,column coordinate of a cell on the board
 struct Coordinate {
 int row, column;
 };

 // For storing the coordinates of the cells in the same row,
 // same column and same quadrant as the given cell.
 // The coordinate of the given cell is not stored
 // so the array size is 8 and not 9
 Coordinate CellsInRow[8];
 Coordinate CellsInColumn[8];
 Coordinate CellsInQuadrant[8];

 bool NoSolution(Coordinate cell);
 void GetRowCells(Coordinate cell);
 void GetColumnCells(Coordinate cell);
 void GetQuadrantCells(Coordinate cell);

 bool SearchInSolution(int number);
 void FindPossibleSolutions(Coordinate cell);
 void FindAllPossibleSolutions();
 void FindAllNakedSingles(Coordinate cell);

 bool SearchInPossibleSolution(int number);
 void FindHiddenSingles(Coordinate cell);
 void FindAllHiddenSingles();

public:
 Sudoku();
 void CreatePuzzle();
 void PrintBoard();
 void PrintSolution(Coordinate coord);
 void testing();
 void SolvePuzzle();

};

#endif

Sudoku.cpp

#include "Sudoku.h"

// Constructor
// initialize all to 0
Sudoku::Sudoku() {
 for (int r = 0; r < 9; r++) {
 for (int c = 0; c < 9; c++) {
 board[r][c]. solution = 0; // no solution yet
 for (int i = 0; i < 10; i++) {
 board[r][c].possible_solutions[i] = false; // no possible solution
 }
 }
 }
}

// initialize board with a puzzle
void Sudoku::CreatePuzzle() {
 board[0][2].solution = 9;
 board[0][3].solutions = 4;
 // the rest of the lines for the puzzle ...
}

// prints the board with the solutions
void Sudoku::PrintBoard() {
 ...
}

// returns true if the given cell has no solution yet, i.e., it is empty,
// false otherwise
bool Sudoku::NoSolution(Coordinate cell) {
 ...
}

// print the solution for the given cell if there is one
// otherwise print all the possible solutions for the cell
void Sudoku::PrintSolution(Coordinate cell) {
 ...
}

// Initializes CellsInRow by filling in the coordinates
// for all the cells in the same row as the given cell.
// The coordinate of the given cell is not stored.
void Sudoku::GetRowCells(Coordinate cell) {
 ...
}

// Initializes CellsInColumn by filling in the coordinates
// for all the cells in the same column as the given cell.
// The coordinate of the given cell is not stored.
void Sudoku::GetColumnCells(Coordinate cell) {
 ...
}

// Initializes CellsInQuadrant by filling in the coordinates
// for all the cells in the same quadrant as the given cell.
// The coordinate of the given cell is not stored.
void Sudoku::GetQuadrantCells(Coordinate cell) {
 ...
}

// This is a helper function for FindPossibleSolutions
// For all the cells in the CellsInRow, CellsInColumn and CellsInQuadrant arrays
// that already have a solution
// search the solution in those cells for the given number
// (i.e. see if the solution in those cells is equal to the given number)
// returns true if the given number is found, false otherwise
bool Sudoku::SearchInSolution(int number) {
 // for all the cells in CellsInRow, CellsInColumn and CellsInQuadrant
 for (int i = 0; i < 8; i++) {
 if (...
}

// Find all the possible solutions for a given cell.
// The function updates the possible_solutions array for the given cell.
// The row,column coordinates specify the given cell.
void Sudoku::FindPossibleSolutions(Coordinate cell) {
 // get coordinates for all the cells in row, column and quadrant
 GetRowCells(coord);
 GetColumnCells(coord);
 GetQuadrantCells(coord);

 if (SearchInSolution(i)) { // if i is found in row, column or quadrant then
 ... // i is NOT a solution, otherwise it IS a solution
}

void Sudoku::testing() {
 CreatePuzzle();
 cout << "Initial puzzle" << endl;
 PrintBoard();
 Coordinate cell;
 cell.row = 6;
 cell.column = 2;
 FindPossibleSolutions(cell);
 PrintSolution(cell); // should print out 4,5,7

 cell.row = 8;
 cell.column = 2;
 FindPossibleSolutions(cell);
 PrintSolution(cell); // should print out 4

 cell.row = 6;
 cell.column = 7;
 FindPossibleSolutions(cell);
 PrintSolution(cell); // should print out 1,2,5,7,8,9
}

main.cpp

#include <iostream>
using namespace std;
#include "Sudoku.h""

int main() {
 Sudoku s;
 s.CreatePuzzle();
 s.PrintBoard();
 s.SolvePuzzle();
}

6. GetQuadrantCells

Given a cell coordinate, how to find the cells in the quadrant to initialize the array CellsInQuadrant?

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8

2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8

4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8

5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8

6,0 6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8

7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8

8,0 8,1 8,2 8,3 8,4 8,5 8,6 8,7 8,8

Notice that for both the row and column coordinates in each quadrant they are in the range 0-2, 3-5, or 6-

8. Here are the steps:

1. Given either the row or column number, determine which range (0-2, 3-5, or 6-8) it is in.

2. Once you know which range it is in then you can determine the starting number for that range.

3. Knowing the starting number for the range, you can now get the remaining two numbers.

For example, given a 7, it is in the range 6-8, so the starting number is 6. Therefore the three numbers

are 6, 7 and 8.

A very efficient and simple way to find the starting number for the range is just to do an integer

division and multiplication, i.e. number/3*3.

For your project you DO NOT need to read any further.

However, you’ll get BONUS POINTS if you attempt what is

discussed next.

7. Here’s a very difficult puzzle to solve

Note, for your final project your program does not need to be able to solve this puzzle.

Start with the three steps for solving the easy puzzle.

After doing the three steps to solve the easy puzzle

you’ll end up with this, and the loop exits with no

more solutions to be found.

Step 4 Two more new things to look for in all the possible

solutions:

1) Look for two cells with the only two numbers in

either row, column, or quadrant. Cells (8,7) and

(8,8) are the only cells in the quadrant that have

the numbers 1 and 5. So 1 and 5 are the only

possible solutions in these two cells. – Naked

Pair

2) Look for three cells with the only three numbers

in either row, column, or quadrant. Cells (8,0),

(8,1), and (8,3) have only the three numbers 2, 4

and 6 as possible solutions. So these three

numbers are the only possible solutions in these

three cells and cannot be possibilities for any

other cells in that row. – Naked Triplet

Step 5

Update the possible solutions in the corresponding

row, column or quadrant.

Step 6 Repeat from step 1, i.e., the steps for the easy

solution.

Here’s the final solution

8. Here’s an even harder puzzle to solve

Naked Triplet

Locked candidates

Naked Pair

XY-Wing

